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Abstract—The reconstruction of high-fidelity 3D human faces
from a single 2D image is a long-standing and highly ill-
posed problem in computer vision. Recent advances in 3D-
aware diffusion priors, such as Zero123 and SyncDreamer, have
enabled the generation of consistent novel views, but often
fail to recover accurate 3D geometry, leading to artifacts like
the ”Janus problem” (multi-face). Concurrently, 3D Gaussian
Splatting (3DGS) has emerged as a state-of-the-art representation
for high-fidelity, real-time rendering, but its application in single-
image generation remains challenging. In this work, we propose
FaceSplat, a lightweight framework that synergistically combines
a multi-view consistency generator, a 3DGS representation, and a
strong domain-specific geometric prior. Our method operates in
two stages: first, we leverage a pre-trained multi-view generator
to produce a set of photometrically consistent views from a single
input. Second, we optimize a 3DGS model, guided by a novel, two-
part loss function: (1) a global 3DMM-based geometric loss that
enforces the correct facial topology and eliminates the Janus ar-
tifact, and (2) a local, Facial-Component Perceptual Loss (FCPL)
that uses semantic masks to prioritize high-frequency details in
critical regions (eyes, nose, mouth). Experiments on the FFHQ
dataset show that FaceSplat achieves state-of-the-art results in
both geometric accuracy and perceptual quality, outperforming
existing methods in single-image 3D face reconstruction.

Index Terms—3D Gaussian Splatting, 3D Face Reconstruction,
Single-Image 3D, Diffusion Models, Geometric Priors, 3DMM.

I. INTRODUCTION

Generating 3D content from 2D images is a pivotal goal
in computer graphics and vision, with applications ranging
from virtual reality (VR) and augmented reality (AR) to digital
avatar creation. The advent of 2D diffusion models [1] has
provided powerful, generalizable priors for appearance and
texture. This has spurred the development of ”3D lifting”
models like Zero-1-to-3 [2] and SyncDreamer [3], which can
synthesize novel views of an object from a single input image.

However, this lifting process is fundamentally ill-posed.
A 2D-trained model lacks an inherent understanding of 3D
geometry [4]. When asked to generate the ”back” of a face, its
training data strongly suggests that the most likely output is...
another face. This leads to the well-known ”Janus problem”
[5], where the resulting 3D model has multiple faces or
distorted geometric structures, as seen in Fig. ??(b). While
consistency-aware models like SyncDreamer mitigate this
by enforcing photometric agreement between views, they do
not guarantee geometric correctness, often producing over-
smoothed, ”plasticky” results.

Independently, 3D Gaussian Splatting (3DGS) [6] has
emerged as a state-of-the-art 3D representation. It enables real-
time rendering and superior visual fidelity compared to Neural
Radiance Fields (NeRF) [7]. This makes 3DGS an ideal target
representation for 3D generation.

The challenge, therefore, is to combine a single-image
multi-view generator with a 3DGS representation in a way that
*guarantees* geometric plausibility, especially for a complex
domain like the human face.

In this paper, we propose FaceSplat, a lightweight frame-
work that solves this problem by introducing a strong, domain-
specific geometric prior. Our framework operates in two
stages, as shown in Fig. 1. First, we use a frozen SyncDreamer
model to generate a set of N consistent novel views. Second,
we optimize a 3DGS model to match these views.

Our core contribution lies in a novel, two-part loss function
for this optimization:

1) Global Geometric Regularization: We introduce a 3D
Morphable Model (3DMM) [8] as a global shape prior.
We initialize the 3D Gaussians on the 3DMM surface
and employ a ”splat-to-surface” loss [9] that penalizes
Gaussians for straying from this topologically-correct
mesh. This explicitly eliminates the Janus artifact.

2) Local Perceptual Refinement: 3DMMs are low-
resolution and cannot capture fine, person-specific de-
tails [10]. To address this, we introduce a Facial-
Component Perceptual Loss (FCPL), which uses seman-
tic face parsing masks to up-weight the LPIPS loss on
critical regions (eyes, nose, mouth).

This dual-loss strategy allows FaceSplat to leverage the
3DMM for global consistency while using the 3DGS repre-
sentation to reconstruct high-frequency local details. Our ex-
periments demonstrate that FaceSplat generates high-fidelity,
geometrically-accurate 3D faces from a single image, outper-
forming state-of-the-art general-purpose and domain-specific
methods.

II. RELATED WORK

3D Representation. Neural Radiance Fields (NeRF) [7]
achieve state-of-the-art novel view synthesis by representing
scenes as implicit functions. However, their slow training
and rendering speeds are prohibitive. 3D Gaussian Splatting



Fig. 1. The FaceSplat Pipeline. Stage 1: A single input image is used
to estimate a 3DMM prior and generate N consistent novel views via
SyncDreamer. Stage 2: A 3DGS model is initialized from the 3DMM mesh
and optimized using our two-part loss, which combines a global geometric
loss (Lgeom) for shape consistency and a local perceptual loss (LFCPL) for
high-frequency facial details.

(3DGS) [6] recently surpassed NeRF, offering both faster train-
ing and real-time, high-fidelity rendering by using an explicit
point-based representation of 3D Gaussians. Its explicit nature
makes it highly suitable for integration with other geometric
representations, such as meshes.
Single-Image 3D Generation. Lifting a single 2D image to
3D is a highly ill-posed task. Early methods relied on strong
categorical priors. Recent works leverage 2D diffusion models.
Zero-1-to-3 [2] finetunes a diffusion model to be viewpoint-
conditioned, allowing it to generate novel views. However,
it suffers from severe inconsistency. Subsequent works like
Cascade-Zero123 [12] and Zero123++ [13] improve consis-
tency by retraining or using self-prompting. SyncDreamer
[3] introduces a 3D-aware feature attention mechanism to
synchronize the diffusion process across views, yielding highly
consistent images. These methods, however, focus on *photo-
metric* consistency, not *geometric* accuracy, and can still
produce flawed 3D shapes.
3DGS-based Generative Models. Several recent works have
adopted 3DGS as the representation for generative tasks.
GaussianDreamer [5] bridges 2D and 3D diffusion models
to generate 3DGS from text prompts. DreamGaussian also
uses 3DGS for fast 3D generation. These methods are general-
purpose and still struggle with the Janus problem , particularly
for complex categories like humans, as they lack strong
geometric priors.
Geometric Priors for Face Reconstruction. 3D Morphable

Models (3DMMs) are parametric models that have long
been the standard for providing a strong geometric prior
for 3D face reconstruction. They ensure a consistent and
plausible face topology. Recently, methods have begun to
combine 3DGS with 3DMMs. SplatFace [9] uses a 3DMM to
guide 3DGS optimization for reconstruction from *multi-view
video*. GaussianAvatars [15] and NPGA [16] rig dynamic
3DGS to a parametric face model to create animatable avatars,
also from multi-view data. Our work is distinct in that we
tackle the more challenging *single-image* reconstruction
problem, proposing a novel synergy between a single-image
consistency generator (SyncDreamer) and a dual-loss (global
+ local) 3DGS optimization.

III. METHODOLOGY

Our goal is to reconstruct a high-fidelity 3DGS represen-
tation of a human face G from a single input image Iin.
Our method, FaceSplat, consists of two stages: (1) Consistent
Multi-View Generation and (2) Prior-Guided 3DGS Optimiza-
tion.

A. Stage 1: Consistent Multi-View Generation

We first generate a set of ”pseudo ground-truth” novel views
that are photometrically consistent with Iin. We leverage a pre-
trained, frozen SyncDreamer model, which is a state-of-the-art
multi-view consistent diffusion model.

Given Iin, we first estimate its camera pose Pin and 3DMM
parameters using a standard off-the-shelf regressor. We then
define a set of N target camera poses {P1, ..., PN} (e.g.,
orbiting the head). The SyncDreamer model conditions on
Iin and Pin to jointly denoise N views, producing a set of
target images {I1, ..., IN} that are highly consistent with each
other. These images serve as the 2D supervision for our 3DGS
optimization.

B. Stage 2: Prior-Guided 3DGS Optimization

We represent the 3D face as a set of 3D Gaussians G =
{Gk}, where each Gaussian is defined by its position µk,
covariance Σk, opacity αk, and color ck. These parameters
are optimized using a differentiable renderer to minimize our
novel loss function.
3DMM-Guided Initialization. Instead of random initializa-
tion, we initialize the Gaussian positions µk by sampling
points directly from the 3DMM mesh surface M3DMM es-
timated in Stage 1. This ”warm start” immediately enforces
a plausible global head shape and significantly accelerates
convergence.
Composite Loss Function. Our total loss Ltotal is a weighted
sum of three components:

Ltotal = Lphoto + λgeomLgeom + λFCPLLFCPL

1. Photometric Loss (Lphoto). This term ensures the rendered
3DGS image Irender matches the target image Igt from Stage
1. We use a standard combination of L1 and SSIM [17] losses:

Lphoto = λL1||Irender−Igt||1+λSSIM (1−SSIM(Irender, Igt))



2. 3DMM Geometric Loss (Lgeom). This is our **global
constraint** to solve the Janus problem. It enforces the
3DMM’s topology. We compute the shortest distance from
each Gaussian center µk to the surface of the 3DMM mesh
M3DMM . This ”splat-to-surface” loss [9] acts as a strong
regularizer:

Lgeom =
∑
k

min
p∈M3DMM

||µk − p||22

This loss term pulls any errant Gaussians (e.g., those forming
a second face) back to the correct mesh surface, ensuring a
valid head geometry.
3. Facial-Component Perceptual Loss (LFCPL). This is
our **local constraint** to reconstruct high-frequency details
missed by the low-resolution 3DMM prior. We use a pre-
trained face parsing network to compute semantic masks Wc

for c ∈ {eyes, nose, mouth}. We then compute a standard
LPIPS loss and weight it by these masks, forcing the model
to prioritize perceptual accuracy in these critical regions:

LFCPL =
∑
c

Wc ⊙ LPIPS(Irender, Igt)

This component is crucial for moving beyond the ”plas-
ticky” look of 3DMMs and achieving photorealistic, identity-
preserving details in the 3DGS model.

IV. EXPERIMENTS

A. Experimental Setup

Dataset. We train and evaluate FaceSplat on the **FFHQ**
dataset , using the standard test split. We also demonstrate
qualitative results on in-the-wild images from **CelebA-
HQ** to show generalization.
Baselines. We compare FaceSplat against four methods: 1)
Zero123-GS : A naive pipeline of Zero-1-to-3 and 3DGS
optimization. 2) GaussianDreamer : A SOTA general-purpose
text-to-3D-GS model. 3) SyncDreamer-GS : A strong base-
line using our pipeline *without* Lgeom and LFCPL. 4)
SplatFace : SOTA for 3DGS+3DMM reconstruction, adapted
from its multi-view setup to our single-image task.
Metrics. We evaluate both 2D novel view synthesis quality
and 3D geometric accuracy.

• 2D Metrics: PSNR↑, SSIM↑ [17], and LPIPS↓ (VGG).
• 3D Metric: Chamfer-L1 Distance↓ between the rendered

point cloud and the pseudo-ground-truth 3DMM fit.

B. Quantitative Results

As shown in Table I, FaceSplat significantly outperforms
all baselines in perceptual quality (LPIPS) and geometric
accuracy (Chamfer-L1). ‘Zero123-GS‘ fails on all metrics,
confirming its inconsistency. ‘GaussianDreamer‘ also shows
poor geometric and perceptual scores. Our strong baseline,
‘SyncDreamer-GS‘, achieves high PSNR/SSIM. This is be-
cause it produces photometrically consistent but overly smooth
images, which PSNR favors. However, its high LPIPS and
Chamfer-L1 scores reveal its failure to capture fine details and

TABLE I
QUANTITATIVE COMPARISON ON THE FFHQ TEST SET. OUR METHOD,

FACESPLAT, ACHIEVES STATE-OF-THE-ART PERFORMANCE IN
PERCEPTUAL QUALITY (LPIPS) AND GEOMETRIC ACCURACY (CHAMFER

DISTANCE). ↑: HIGHER IS BETTER. ↓: LOWER IS BETTER.

Method PSNR ↑ SSIM ↑ LPIPS ↓ Chamfer-L1 (1e-3) ↓

Zero123-GS 18.23 0.715 0.302 8.92
GaussianDreamer 20.15 0.788 0.245 6.14
SyncDreamer-GS 23.45 0.841 0.191 5.03
SplatFace 22.89 0.835 0.183 4.31

FaceSplat (Ours) 23.12 0.852 0.154 4.19

accurate geometry. ‘SplatFace‘ achieves good geometry (low
CD) due to its 3DMM prior, but its LPIPS score is worse than
ours, as it lacks our detail-focused FCPL.

FaceSplat (Ours) achieves the best LPIPS and Chamfer-L1
scores, demonstrating that our dual-loss strategy successfully
combines global geometric accuracy with local high-fidelity
detail.

C. Qualitative Results

‘Zero123-GS‘ (b) suffers from a clear Janus artifact, gener-
ating a distorted face on the back of the head. ‘SyncDreamer-
GS‘ (c) is geometrically consistent (no Janus) but produces a
”plasticky” model that lacks facial detail and realism. Face-
Splat (Ours) (d) produces a geometrically correct 3D model
(note the plausible back-of-head) while simultaneously cap-
turing high-fidelity texture and fine details, such as reflections
in the eyes and the structure of the hair, closely matching the
input image.

D. Ablation Study

To validate our two-part loss function, we conduct an
ablation study in Fig.

• w/o Lgeom: When we remove the 3DMM geometric
loss, the global shape is unconstrained. The optimization
fails, and the model reproduces the Janus artifact, as the
photometric loss alone cannot resolve the 3D ambiguity.

• w/o LFCPL: When we remove the Facial-Component
Perceptual Loss, the Lgeom term correctly enforces the
global head shape (no Janus). However, the optimization
results in a blurry, low-detail face, similar to the 3DMM
prior itself.

• Full Model: Our full FaceSplat model, using both losses,
is the only one that is both geometrically consistent
*and* perceptually detailed. This confirms that Lgeom is
necessary for global shape and LFCPL is necessary for
local fidelity.

V. CONCLUSION

We have presented FaceSplat, a lightweight framework for
high-fidelity 3D face reconstruction from a single image. Our
method is the first to synergistically combine a single-image
multi-view consistency generator (SyncDreamer) with a 3DGS
representation guided by a strong geometric prior. Our core



contribution is a novel, two-part loss function: a *global*
3DMM geometric loss (Lgeom) that ensures topological con-
sistency and solves the Janus problem, and a *local* Facial-
Component Perceptual Loss (LFCPL) that reconstructs high-
frequency, person-specific details. Quantitative and qualitative
experiments show that FaceSplat achieves state-of-the-art re-
sults, producing 3D faces that are both geometrically accurate
and photorealistic.
Limitations and Future Work. Our method currently relies
on a domain-specific 3DMM, limiting it to faces. Furthermore,
our model generates static avatars. Future work could explore
replacing the 3DMM with more general-purpose geometric
priors to extend the method to other object categories. Another
exciting direction is to create dynamic avatars by ”rigging” the
3D Gaussians to the 3DMM’s expression parameters, enabling
real-time animation.
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