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Abstract—Recent advancements in Diffusion Transformers
(DiTs) have enabled high-fidelity text-to-video (T2V) generation.
However, preserving fine-grained character and object iden-
tity across long temporal durations (>10s) remains a critical
challenge. Existing methods, such as reference-guided cross-
attention (e.g., IP-Adapter), often suffer from “identity decay”—a
phenomenon where high-frequency identity features (e.g., moles,
specific tattoos) degrade or flicker as the video length increases
beyond the training context window. In this paper, we propose
Temporal-ID, a novel architecture designed for persistent identity
preservation in long-form video synthesis. QOur approach intro-
duces two key components: (1) a Dual-Stream Identity Encoder
that mathematically disentangles high-frequency texture details
from low-frequency structural semantics, preventing feature
smoothing; and (2) an Adaptive Temporal Memory Bank (ATMB)
that dynamically manages a Key-Value (KV) cache of identity-
rich “anchor frames” based on a novel Identity Entropy metric.
Extensive experiments on a custom benchmark of 60-second
videos demonstrate that Temporal-ID outperforms state-of-the-
art methods (ReferenceNet, UniVideo) in identity consistency
metrics (CLIP-I, Face-Sim) and temporal stability (Video Con-
sistency Distance), effectively eliminating identity flicker.

Index Terms—Video Generation, Diffusion Models, Identity
Preservation, KV-Cache, Adaptive Memory, Deep Learning

I. INTRODUCTION

The transition from image generation to video generation
has been driven by the adoption of Video Diffusion Transform-
ers (DiTs) [1], [5], which treat video as a sequence of spatio-
temporal tokens. While these models excel at generating co-
herent motion and realistic physics, they struggle significantly
with identity persistence over long horizons.

In a typical autoregressive or long-context generation sce-
nario, the model’s attention mechanism has a limited window.
As the generation progresses, the representation of the subject
“drifts” from the initial reference. This results in the “uncanny
valley” of identity flicker: a character’s facial structure might
morph subtly between frames, or their clothing might change
texture. Current solutions typically rely on injecting reference
features via static cross-attention [2]. However, we observe
that static injection often conflicts with the dynamic motion
priors of the DiT, leading to rigid, “stiff” faces or washing out
fine details.

To address this, we present Temporal-ID, a framework that
treats identity not as a static condition but as a temporally
adaptive signal. Our key insight is that not all past frames are

equally important for identity preservation. By maintaining
a sparse, high-fidelity memory of “anchor states”—frames
where the subject is clearly visible and novel views are
presented—we can enforce consistency without the quadratic
computational overhead of full attention.

Our contributions are:

o We propose the Dual-Stream Identity Encoder, which
uses parallel pathways to fuse semantic CLIP features
with high-frequency ArcFace features, mathematically
preserving both the “concept” and the “details” of a
subject.

o We introduce the Adaptive Temporal Memory Bank
(ATMB), a dynamic read/write memory module. It uses
an Identity Entropy score to selectively cache frames
that offer new identity information (e.g., a profile view),
enabling robust re-identification after occlusions.

o« We formulate a Frequency-Aware Consistency Loss
(based on VCD) to explicitly penalize high-frequency
identity flicker during training.

II. RELATED WORK
A. Video Diffusion Architectures

Early video generation relied on 3D U-Nets [13]. Recently,
DiTs [5] have become dominant due to their scaling properties.
Models like Sora [1] and Veo [4] use patch-based tokenization.
However, handling long contexts in DiTs usually involves
sliding windows or ring attention, which can dilute identity
information over time.

B. Identity Preservation Mechanisms

Subject-driven generation has primarily focused on images.
Tuning-based methods like DreamBooth [14] and LoRA [15]
are effective but computationally expensive per subject. Zero-
shot methods like IP-Adapter [2] and InstantID [7] use de-
coupled cross-attention. In video, methods like ReferenceNet
[3] treat the reference image as a sequence of tokens to be
attended to. Our work improves upon this by differentiating
between redundant and informative identity tokens via our
memory bank.

C. Memory Mechanisms in Generative Models

Efficient long-context processing is a key area in LLMs,
utilizing techniques like K'V-caching and attention sinks [12].



In video, recent works like WorldMem [10] and LongLive [! 1]
have begun exploring external memory banks for scene con-
sistency. We extend this specifically to identity preservation,
introducing specific read/write policies for facial features.

III. METHOD
A. Overview
Temporal-ID is built upon a pre-trained Latent Diffusion
Transformer (DiT-XL/2). The core architecture is modified
with two parallel streams: the Generation Stream (processing

the noisy video latent z;) and the Identity Stream (processing
the reference image I,.y).
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Fig. 1: The Temporal-ID Architecture. The Dual-Stream
Encoder fuses semantic and detail features. The Adaptive
Temporal Memory Bank (ATMB) dynamically stores identity-
rich tokens.

B. Dual-Stream Identity Encoder

Standard CLIP encoders are trained for semantic alignment,
often acting as low-pass filters that discard fine details. To
preserve identity, we must capture both the semantic category
(“man in suit”) and the specific texture details (“tie pattern”).

We employ a dual-stream architecture:

e Stream 1 (Semantic): A frozen CLIP ViT-L/14 encoder

extracts global semantic tokens Fl,, € RV*P.

e Stream 2 (Detail): A trainable ArcFace-based CNN

encoder extracts local identity features Fj; € RM*D.
We apply a high-pass filter H to the input image before
this stream to emphasize edges and textures.

The features are fused via a Gated Cross-Attention mecha-
nism:

Fip = Norm(Fsem +a- CrOSSAttn(F‘;emy Fdet)) (D

where « is a learnable scalar initialized to 0. This ensures the
model starts with semantic understanding and progressively
learns to incorporate high-frequency details.

C. Adaptive Temporal Memory Bank (ATMB)

To ensure consistency over long horizons without the com-
putational cost of attending to the entire video history, we
introduce ATMB. The ATMB serves as a high-fidelity buffer
that prevents “identity drift” by enforcing attention to specific
anchor states.

1) Dynamic Write Policy: We employ an Identity Entropy
metric to determine which frames are stored. Unlike standard
FIFO queues, we only store frames that provide novel identity
information (e.g., a side profile revealed after a head turn).
For a generated frame ¢, we calculate its identity embedding
E;q(I;) and compare it against the centroid of the current
memory cluster Cpq:
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If H;q(t) > 7, frame ¢ is tokenized into Key-Value pairs
(K¢, V;) and written to memory. This ensures the memory
bank covers the diverse manifold of the subject’s appearance
(front, side, up) rather than redundant duplicates of the same
angle.

2) Feature Retrieval (Read Mechanism): To strictly enforce
consistency during generation, we do not simply average
memory features. Instead, we use a Top-k Sparse Retrieval
mechanism. For the current query tokens (), we calculate
attention scores against the memory keys K :

Hi(t) =1 2

T
Amem = Softmax (%%/Vl) 3)

We mask all but the top-£ entries in A,,,¢,, before applying the
softmax. This forces the model to attend strongly to the most
relevant historical reference (e.g., matching the current head
pose to a stored profile view) rather than blurring features
across all history. This sharpness in attention is critical for
eliminating texture smoothing.

D. Frequency-Aware Consistency Loss

Standard MSE losses in latent space are insufficient for pre-
venting high-frequency flicker. We propose a spectral loss that
explicitly penalizes identity shifts in the frequency domain.

We treat the temporal sequence of latents for a specific
spatial location (h,w) as a 1D signal zi?fw). We apply a 1D
Fast Fourier Transform (FFT) along the temporal dimension:

Z(f) = FFT(z1.7) (4)

Identity flicker manifests as noise in the high-frequency com-
ponents of Z(f). To mitigate this, we construct a high-pass
mask Mjp,;4, and minimize the distance between the spectrum
of the generated video Z and the optical-flow-warped reference
latents 2. ¢:

Lvep = [|Mnpigh ® (Z(2) — Z(zref))| I3 )

This loss allows low-frequency components (global mo-
tion) to deviate from the reference—enabling natural ani-
mation—while strictly penalizing high-frequency deviations
(flicker) that corrupt identity.

The total training objective is:

Etotal = £diff + /\idﬁface + A1)c'dLVC'D (6)



IV. EXPERIMENTS
A. Implementation Details

We fine-tuned a pre-trained DiT (Open-Sora parameters) on
a subset of the VoxCeleb2 and WebVid-10M datasets. The
model was trained for 50k steps on 8 x NVIDIA A100 (80GB)
GPUs. We set 7 = 0.15 for the memory threshold and memory
budget B = 32 frames. The resolution was 512 x 512 at 24{ps.

B. Metrics

e CLIP-I: Frame-wise cosine similarity with reference.

o Face-Sim: ArcFace similarity (identity fidelity).

o VCD (Video Consistency Distance): Measures temporal
smoothness in CLIP embedding space over time. Lower
is better.

o User Preference: Human evaluation of identity preser-
vation.

C. Ablation Study

To validate our components, we trained three variants. Table
I shows that both the Dual-Stream encoder and ATMB are
crucial.

TABLE I: Ablation Study on VoxCeleb Validation Set

Configuration Face-Sim T VCD | Inference (s)
Base DiT + IP-Adapter 0.74 0.18 12.5
+ Dual-Stream (No Mem) 0.82 0.16 14.2
+ ATMB (Single Stream) 0.79 0.09 13.8
Temporal-ID (Full) 0.88 0.05 15.1

D. Comparison with SOTA

We compared Temporal-ID against ReferenceNet [3], Uni-
Video [9], and AnimateDiff [6].
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Fig. 2: Identity Stability over Time. Temporal-ID maintains
high Face-Sim scores even at ¢ = 60s, whereas baselines
degrade significantly after 15s.

As seen in Fig. 2, baseline methods suffer from “identity
decay,” where the Face-Sim score drops below 0.6 after 20
seconds. Temporal-ID maintains a score > (.85 throughout
the 60-second generation. Visual results confirm that our
method eliminates the “flickering” of accessories (e.g., glasses,
earrings) that plagues other methods.

V. CONCLUSION

We introduced Temporal-ID, a robust solution for the
identity decay problem in long-form video generation. By
disentangling identity features via our Dual-Stream Encoder
and actively managing identity context via the Adaptive Tem-
poral Memory Bank, we achieve state-of-the-art results. Future
work will extend this to multi-subject scenarios and explore
interaction-aware memory updates.
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