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Abstract—The creation of immersive and dynamically evolv-
ing narratives for Virtual Reality (VR) remains a challenge,
primarily due to the inherent constraints in maintaining spa-
tial and temporal coherence during generative processes. Cur-
rent Text-to-Video models excel in visual quality but fail to
ground narratives in a consistent 3D world, leading to visual
inconsistencies and narrative logic violations when scaling to
multi-segment stories. We introduce the Dream World Model
(DreamWM), a novel, closed-loop framework that transforms
abstract narrative descriptions (e.g., dreams or story scripts)
into high-fidelity, spatially-grounded, and temporally coherent
VR video experiences. DreamWM’s core is a Narrative Latent
World Model that manages high-level story progression, emotion,
and causal logic through a latent state z;. This state drives a
Text-to-3D Scene Generator (Marble) to produce consistent 3D
geometry priors (S;) like Gaussian Splats, which are then used
as multi-view control signals for a high-quality Video-to-Video
Model (VACE) to synthesize the final expressive video segment
V.. The crucial innovation is the World Model-Driven Closed
Loop, where the generated video V: feeds back to update the
latent state z;. 1, enabling dynamic scene transitions, emotional
modulation, and dreamlike transformations with unparalleled
coherence. DreamWM establishes a new paradigm for generative
storytelling, bridging the gap between high-fidelity 3D geometry
and dynamic, emergent narrative content.

Index Terms—World Models, Generative Al, 3D Reconstruc-
tion, Video Generation, Virtual Reality, Immersive Storytelling,
Computational Narrative, Gaussian Splatting.

I. INTRODUCTION

The convergence of generative Al and Extended Reality
(XR) promises a new era of interactive, personalized content
creation [16], [17]. However, current generative models are
typically specialized: Text-to-Image models lack temporal
dynamics [11], while state-of-the-art Text-to-Video systems
like Sora [9] and Lumiere [10] often struggle with maintaining
long-range temporal consistency and spatial grounding
across sequential story segments. Specifically, when generating
a narrative where a user object must remain structurally
consistent across diverse camera angles or dramatic scene
shifts, these models frequently introduce object hallucinations
or geometric inconsistencies [15], [20]. This geometric drift
is fatal for immersive applications where user expectations of
physical consistency are high, a core focus of CHI research
on system plausibility [16], [18].

The concept of a World Model (WM), pioneered in rein-
forcement learning and cognitive science [3], [4], [5], offers

a powerful solution. A WM provides a predictive, latent
representation of the environment’s dynamics, allowing an
agent to plan and anticipate outcomes. We adapt this principle
to narrative generation: instead of predicting agent actions, our
World Model predicts narrative state evolution—the changes
in plot, setting, and emotional tone—ensuring logical causality
and coherence [6], [7].

We introduce the Dream World Model (DreamWM), a
novel 3D-to-Video framework designed explicitly for emer-
gent, immersive narrative generation in VR. DreamWM ad-
dresses the core challenge of coherence by strictly separating
the geometry (the world’s structure) from the appearance
(the visual style and lighting), a design principle critical for
robust generative synthesis [13].

DreamWM’s Core Components and Loop. The user’s in-
put narrative initializes a Narrative Latent State z,. This state
is decoded by a Text-to-3D Generator, which we term Marble,
into a structured, geometrically consistent 3D scene S; (e.g.,
using 3D Gaussian Splatting [2]). Multi-view geometric priors
(RGB, depth, normals) are rendered from S;. These priors,
along with the narrative state, condition a high-fidelity Video-
to-Video model (VACE) to generate the expressive video
segment V. Crucially, V; is then re-encoded by the WM to
compute the next state z;,1, completing the closed loop that
drives the narrative evolution. This structure allows the system
to generate complex narrative dynamics, including non-linear,
dreamlike scene transitions (e.g., a room melting into a forest)
while preserving the 3D-grounded nature of the scene.

A. Contributions

In summary, our paper makes the following three key

contributions:

1) We propose the Dream World Model (DreamWM), a
novel, world-model-guided generative narrative frame-
work that bridges high-level narrative logic with low-
level visual synthesis for immersive experiences.

2) We introduce a Geometry-Grounded Video Genera-
tion Pipeline that uses structured 3D representations
(e.g., Gaussian Splatting) to render multi-view, scene-
consistent geometric priors, ensuring spatial and tempo-
ral coherence in the generated video segments.

3) We establish a Narrative World-Model Closed Loop,
where the generated visual output directly updates the



latent narrative state, enabling dynamic, emergent story
evolution, emotional modulation, and complex scene
transformations guided by a cognitive planning mech-
anism.

II. RELATED WORK

Our work synthesizes research across multiple disciplines:
World Models, 3D Scene Generation, High-Fidelity Video
Synthesis, and Computational Narrative.

A. World Models and Latent Dynamics

World Models (WMs) originated in Reinforcement Learning
(RL) as a method to learn a compressed, predictive model
of the environment dynamics [22]. Key advancements include
PlaNet [23] and the seminal Dreamer series [3], [4], [5], which
use a Recurrent State-Space Model (RSSM) to learn a compact
latent state z; that predicts future states given actions uy.
More recently, WMs have been scaled up to handle general
video data. WorldDreamer [6] and LWM [7] demonstrate
the capacity of WMs to understand complex visual sequence
dynamics by predicting masked tokens, allowing them to
handle the non-linear, multi-modal nature of real-world videos.
Genie [8] further pushed WMs into interactive environments.
Our work adapts the WM paradigm from acting within a fixed
physical environment to planning and controlling a high-
level narrative arc, where the “action” is the narrative tran-
sition and the “environment” is the generated story segment.
This is aligned with the cognitive perspective of WMs for
general Al [19].

B. Text-to-3D and 3D Scene Generation

The ability to generate 3D assets from text is critical
for grounding narratives. Early methods relied on optimizing
Neural Radiance Fields (NeRFs) [1] using Score Distillation
Sampling (SDS) [12], but suffered from slow generation and
geometry ambiguities (the Janus problem). The introduction of
3D Gaussian Splatting (3DGS) [2] revolutionized the field
by enabling real-time rendering and providing a more explicit,
optimizable geometric primitive. Subsequent work, including
DreamGaussian [13] and GaussianDreamer [14], leveraged
3DGS to significantly accelerate text-to-3D generation while
improving geometric consistency. Our component, Marble, is
a derivative of these 3DGS-based generative models, tailored
to produce full, large-scale scenes S; rather than just individual
objects, focusing on the quality and richness of the geometric
priors (depth, normals) necessary for downstream video con-
ditioning. Other related techniques include Zerol23 [25] for
view-consistent image generation and text-to-mesh methods
[26].

C. High-Fidelity Video Generation

Recent advances in video synthesis are dominated by dif-
fusion models. The key challenge is balancing spatial fidelity
with temporal coherence. Models like Imagen Video [20] and
Stable Video Diffusion (SVD) [24] address this via factorized
or space-time attention mechanisms. Lumiere [10] uses a

High-Fidleity VR Video
Ssg

ment
put

Fig. 1. Overview of our system pipeline.

Space-Time U-Net to generate the entire video duration in a
single pass, enhancing global consistency. Sora [9] introduced
scalable patch-based modeling that generalizes across diverse
video durations and aspect ratios. Our VACE (Video-to-Video
Appearance and Coherence Engine) component is a diffusion-
based model optimized for control. Unlike typical text-to-
video models, VACE is conditioned primarily on multiple
geometric prior frames (RGB, depth, normal, segmentation)
rendered from S;, allowing it to focus its generative capacity
on synthesizing texture, lighting, and style p; (appearance)
while strictly adhering to the input 3D geometry [27]. This
decouples structure from appearance, mitigating the temporal
drift problem.

D. Computational Narrative and VR Storytelling

The field of computational narrative investigates algorithms
for generating coherent story structures, from early plot-based
systems [28] to modern LLM-driven story generation [29]. In
XR, the focus shifts to interactive and immersive experiences
[16], [32]. Systems like Storycaster [31] explore generative Al
for room-based storytelling, but typically rely on 2D projec-
tions or pre-authored 3D assets. The key challenge, recognized
by CHI/UIST literature, is enabling emergent narratives that
respond dynamically to user input while maintaining the struc-
tural logic necessary for perceived coherence [28]. DreamWM
contributes to this domain by providing a framework where the
narrative planner (the World Model) is inherently aware of the
underlying spatial structure, allowing for physically-grounded
yet dynamically evolving plots, reminiscent of dream logic
[30].

III. SYSTEM OVERVIEW

As shown in Fig. 1, the Dream World Model (DreamWM)
framework is designed as an iterative, closed-loop gen-
eration pipeline that translates abstract narrative input I
into a sequence of high-fidelity, VR-ready video segments
Vo, V1,...,Vp. The system is structured into four main
components operating over a time step t: the World Model,
the Marble 3D Scene Generator, the Multi-View Rendering
Engine, and the VACE Video-to-Video Model.

A. The DreamWM Closed Loop
The process begins with the user input I at ¢ = 0, which is
encoded to initialize zy. The system then cycles through the
following steps for each narrative segment:
1) Narrative Decoding: The World Model decodes the
latent state z; into a detailed textual prompt P;, which



includes scene description, camera parameters, and emo-
tional tone.

2) 3D Scene Synthesis: P; is passed to the Marble module,
which generates a 3D geometric representation S;.

3) Prior Rendering: The Multi-View Engine renders a set
of geometry priors R = {Grga; Gpepths GNormal } from
S:.

4) Video Generation: R; and the stylistic prompt P;
are fed into VACE, which synthesizes the final video
segment V.

5) State Update (Closed Loop): The World Model pro-
cesses the generated video V, and the previous state z;
to compute the next narrative latent state z;;:

Ziy1 = g¢(Vt, Zt)

This closed-loop feedback mechanism, g4, ensures that the
visual output constantly modulates and informs the future
narrative trajectory, maintaining a dynamic, self-correcting
story logic.

IV. METHOD DETAILS

The successful operation of DreamWM hinges on the syn-
ergistic design of its components, particularly the interplay be-
tween the abstract world model and the concrete 3D geometry
engine.

A. Narrative Latent State and World Model (fg, g4)

The World Model uses a specialized Recurrent Neural
Network (RNN) structure, such as a Gated Recurrent Unit
(GRU) or LSTM, to maintain the latent state z;. The state
z; € RP is highly structured, composed of sub-vectors:

1) Event Embeddings (Zevent): Encodes the current plot
point, entities, and relationships.

2) Emotion Vectors (Zemotion): Captures the dominant
emotional valence (e.g., tension, surprise, tranquility) to
guide the visual style [30].

3) Spatial Intent (zspasial): A vector describing the scene’s
required topological features (e.g., proximity of objects,
type of environment).

The narrative progression is governed by the state transition
function fy:

Ziy1 = f@(Zu Ut)

where u; is an optional manual intervention or a high-level
plot point sampled from a narrative policy (e.g., “introduce a
conflict™).

B. 3D Scene Generation (Marble)

The Marble module is a Text-to-3D Scene Generator based
on 3D Gaussian Splatting (3DGS) [2], trained to decode the
latent state z; into a set of 3D Gaussians G;.

1) Geometry Representation: We use a set of N 3D
Gaussians, where each i-th Gaussian G; is defined by
its mean p; € R3, covariance matrix 3;, opacity «;,
and a diffuse color c;. The geometric stability of 3DGS

Fig. 2. 3D scene generated by Marble

Fig. 3. 3D scene generated by Marble

under different views makes it superior to implicit fields
like NeRF for our purpose [13].

2) Multi-view Rendering Process: The Marble output G;
is used to render a set of K synthetic control frames R;
from strategically sampled camera poses C = {Cj .
These frames strictly enforce the geometric consistency
for the subsequent VACE stage. The rendered priors
include:

e Ggrgp: The raw color rendering of the scene’s
structure.

¢ Gpepin: A depth map crucial for maintaining spatial
layout.

e Gormal: Surface normals, critical for VACE to syn-
thesize plausible lighting and shadows.

C. Geometry-Grounded Video Generation (VACE)

The Video-to-Video Appearance and Coherence Engine
(VACE) is a customized Latent Diffusion Model (LDM) [11].
It takes the low-fidelity geometric priors R; from Marble and
the detailed textual prompt P; (derived from z;) to generate a
high-fidelity video segment V.

1) Conditioning Signals: VACE utilizes a Spatial-
Temporal U-Net architecture [10], where the geometric
priors R, are injected into the U-Net through specialized
ControlNet-like conditioning layers [21] at multiple



Fig. 4. VACE generated video

scales. This forces the generated video to respect the
input depth and normal maps.

2) Spatial-Temporal Fusion: Temporal attention layers are
modulated by the Emotion Vector Zz.nion from the
latent state z;. This enables stylistic consistency (e.g.,
using a dark, high-contrast style for a ’fear’ segment)
across the entire video segment V; and ensures smooth
temporal blending.

3) Style Control: The appearance information, which in-
cludes textures, realistic details, and cinematic lighting,
is primarily generated by VACE, effectively isolating
the dynamic elements (appearance/style) from the static
elements (geometry/structure).

D. World Model-Driven Scene Evolution

The closed-loop mechanism is where the “dream” quality
emerges. The update function z;41 = g¢4(Vy,2) uses a
separate video encoder &,iq to extract salient visual features
Vicedback = Evid(Ve)-

96(V¢,2¢) = GRU(Vieedvack P 2¢)

o Dynamic Scene Transitions: If Vieeghack indicates an
unexpected visual element (e.g., a color shift, or object
presence not in z;), the WM can trigger a non-linear
narrative transition, such as the sudden “melting” of one
scene into another, which is a hallmark of dream logic
[30].

o Updating Story Logic: The feedback mechanism en-
ables the WM to track observable consequences. If the
generated scene V, visually resolves a conflict in Zeyen,
the WM updates z;; to proceed to the next plot point,
ensuring emergent yet causal progression.

E. Temporal Stitching Module

To ensure seamless transitions between segments V; and
V41, we implement a Temporal Stitching Module (TSM).
This module uses an interpolation scheme on the latent space
of VACE, applying noise scheduling across the final L frames
of V, and the initial L frames of V,;;. A keyframe-based

transition mask is utilized to blend the style while the under-
lying 3D geometry from Marble maintains the structural link,
preventing visual pops [33].

F. Design Rationale

o Separating Geometry from Appearance: By using
Marble for structure (3DGS) and VACE for appear-
ance (Diffusion), we gain explicit control. Geometric
coherence is enforced by S;, while creative freedom
and dynamic style are provided by VACE, solving the
“consistent hallucination” problem in video generation
[34].

o World Model Ensures Coherence: The WM acts as
a Narrative Planner and Validator. It enforces high-
level rules, mitigating the risk of the generative models
producing locally pleasing but globally inconsistent or
nonsensical output [28].

o Video Alone is Insufficient: Pure Text-to-Video models,
even advanced ones [9], lack the internal 3D represen-
tation to guarantee multi-view, object-consistent videos
necessary for immersive VR where the user’s viewpoint
is dynamic and unscripted.

V. IMPLEMENTATION DETAILS

A. Training and Hardware

The DreamWM system is implemented using PyTorch. The
World Model (fp,ge) is trained on a synthetic dataset of
narrative transcripts paired with low-fidelity, stylized video
simulations (rendered from pre-authored 3D scenes). Marble
is a fine-tuned Gaussian Splatting generator initialized from
a base model similar to DreamGaussian [13]. VACE is a
customized SVD [24] model trained on a large dataset of
high-resolution video clips conditioned on synthetic depth and
normal maps. Training utilizes 8 NVIDIA A100 GPUs.

B. Hyperparameters and Integration

The latent state z; dimension D is set to 256. The WM
operates at a 3-second narrative chunk frequency. For Marble,
the 3DGS representation is densified to approximately 105
Gaussians per scene. VACE generates videos at 512x512
resolution at 24 FPS, using K = 4 multi-view priors rendered
at 128 x128. The VACE model uses 4 ControlNet conditioning
blocks for integrating the geometric priors R; with a linear
schedule for noise injection.

C. VR Environment Setup

The generated video segments V; are projected onto a 360-
degree cylindrical or cubemap surface using the camera poses
C derived from Marble, enabling seamless presentation in
standard VR headsets (e.g., Meta Quest 3). We use Unity for
the final VR runtime, leveraging its high-performance video
texture playback capabilities.



VI. EXPERIMENTS AND EVALUATION

Our evaluation strategy combines rigorous quantitative met-
rics (ICCV style) for model performance and geometry co-
herence with qualitative user studies (CHI style) for narrative
experience and immersion.

A. Quantitative Metrics

We compare DreamWM against four baselines: (1) Sora
(simulated via high-quality open-source T2V [44]), (2) VACE
alone (T2V without 3D priors), (3) Marble + I2V (generate
3D, render single keyframe, use 12V for motion), and (4)
WorldDreamer (WM optimized for general video prediction).
We use a test set of 100 narrative scripts.

1) Geometry Consistency Score (GCS): Measures the
structural similarity of the generated video V; to the
original 3D scene S;. We use a 3D reconstruction
network (e.g., monocular depth estimation [35]) to infer
3D geometry from V; and compute the Lo error against
the ground truth depth of S;.

2) Temporal Coherence Score (TCS): Calculates the
difference in feature embeddings (e.g., CLIP [36]) be-
tween adjacent frames within V; and across the TSM
boundaries, rewarding smooth transitions [37].

3) Narrative Consistency Score (NCS): An LLM-based
metric that evaluates the generated narrative (extracted
via video-to-text [38]) against the WM’s planned plot
points (Zevent), punishing logical contradictions or incon-
sistencies.

4) Video Fidelity (FID, VBench): Standard metrics for
measuring visual quality and prompt adherence [39],
[40].

VII. DISCUSSION AND FUTURE WORK

A. Cognitive Alignment and Controllability

DreamWM'’s success lies in its cognitive alignment: the
World Model provides the high-level, persistent structure of
“thought” (narrative logic), while the 3D-to-Video pipeline ex-
ecutes the visual rendering. This separation of concerns offers
high controllability; a user or designer can directly modify the
Zemotion VECtOr to instantly apply a consistent, dynamic style
shift across an entire segment without sacrificing structural
stability [5].

B. Interpretability and Hallucination Mitigation

The explicit nature of the World Model’s latent state z;
enhances interpretability. Since z; is composed of deci-
pherable sub-vectors (Zevent, Zemotion)> System behavior can be
traced back to the narrative logic. Furthermore, enforcing 3D
geometric constraints through Marble significantly mitigates
the risk of visual hallucination and geometric drift, which
plagues purely T2V systems.

C. Future Research

Future work will focus on integrating interactive agents.
By incorporating an action space u; controlled by a user,
DreamWM can be extended to true interactive cinematic ex-
periences, where the WM must learn to predict both narrative
progression and agent behavior [41]. We also plan to explore
alternative 3D representations beyond Gaussian Splatting, such
as textured meshes, to optimize for VR rendering pipelines.

VIII. LIMITATIONS

1) Marble Failure Cases: As a generative 3D model,
Marble can still produce geometrically ambiguous or
“melted” objects from complex, highly novel prompts,
which VACE cannot fully correct.

2) VACE Temporal Drift: While mitigated by 3D priors,
VACE may still exhibit minor temporal inconsistencies
in appearance (e.g., flickering textures) over very long
sequences (10+ seconds) if the Zemoion conditioning is
insufficient.

3) World Model Hallucinations: The WM (z;4; =
96(V,2z)) can occasionally misinterpret the video feed-
back V., leading to a non-sequitur update to z;;; and
a sudden, unexpected story branch.

4) VR Rendering Cost: While 3DGS is fast for rendering
priors, the VR presentation requires rendering high-
resolution videos, which demands significant VRAM
and CPU resources for real-time playback in the headset.

IX. CONCLUSION

We presented Dream World Model (DreamWM), a frame-
work that leverages a World Model to guide coherent and ex-
pressive narrative generation, grounded in consistent 3D geom-
etry. By linking the Narrative Latent State (z;) to a 3D Scene
Generator (Marble) and conditioning a high-fidelity Video
Model (VACE) with multi-view geometric priors, DreamWM
overcomes the critical challenges of spatial inconsistency and
temporal drift in generative storytelling. The World Model
closed loop provides a powerful mechanism for dynamic story
evolution and the realization of complex, dreamlike narratives
within a stable 3D world, paving the way for the next
generation of truly immersive and emergent content creation
for Virtual Reality.
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