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Abstract—Traditional Augmented Reality (AR) experiences
in cultural heritage rely on static, pre-modeled 3D assets,
which inherently limit the depth and specificity of context-
aware information. We propose a novel, end-to-end framework
leveraging advancements in 3D Generative Models and Vision-
Language Modeling (VLM) to synthesize context-aware, 360-
degree geometrically consistent 3D object models and associated
animated narratives in real-time on AR smart glasses. Our system
integrates on-device perception, cloud-based context reasoning,
and a computationally efficient 3D Gaussian Splatting (3D-GS)
based generation pipeline. We validate this approach through
a Museum Augmentation Case Study, demonstrating the ability
to dynamically generate and spatially register detailed historical
reconstructions, such as a fully restored Roman Urn, instantly
upon a visitor’s gaze. The paper focuses on overcoming the
critical challenges of low-latency generation and view-consistency
for effective on-device AR content creation.

Index Terms—Augmented Reality, Real-Time 3D Generation,
Generative AI, 3D Gaussian Splatting, Context-Aware Systems,
Museum Augmentation, Video Generation

I. INTRODUCTION

A. Background and Motivation

Augmented Reality (AR) smart glasses represent the next
frontier in human-computer interaction, promising a seamless
convergence of the physical and digital worlds. However, the
widespread adoption of AR is currently limited by a ”content
bottleneck”, where creating high-fidelity, context-specific 3D
assets remains a time-consuming and expensive manual pro-
cess. This limitation is particularly evident in cultural heritage
applications, such as museums, where artifacts demand highly
accurate and varied digital reconstructions (e.g., viewing an
artifact’s original state, internal structure, or historical use).

B. Problem Statement

We aim to address the critical need for dynamic and
scalable AR content. Specifically, how can a computationally
efficient system be designed to generate 360◦ geometrically
and temporally consistent 3D models and accompanying
animations in real-time (< 500 ms latency), conditioned solely
on a user’s visual context (gaze on an artifact) captured by AR
glasses? We seek to move beyond simple asset retrieval to true
generative synthesis.

Fig. 1: Conceptual illustration of the AR Generative Synthesis:
The user’s gaze on the damaged physical artifact (bottom)
triggers the real-time generation and spatial overlay of the
restored, 360◦ view-consistent 3D model (top).

C. Contributions

• A comprehensive, AR-optimized Context-Aware Gen-
erative Architecture integrating VLM reasoning and 3D
synthesis.

• Introduction of a Hybrid 3D Generation Pipeline lever-
aging pre-trained latent spaces and 3D-GS for rapid,
high-fidelity, and 360◦ view-consistent synthesis.

• Demonstration and rigorous evaluation of the system
in a Museum Augmentation setting, focusing on the
synthesis of detailed historical object reconstructions.

• Quantitative analysis of the trade-off between End-to-
End Latency and Geometric Fidelity on representative
AR hardware.

II. RELATED WORK

A. Generative AI for 3D Content

Recent advancements, driven by diffusion models, have
significantly accelerated 3D content creation. Neural Radi-
ance Fields (NeRF) [3] offer exceptional photorealism but
are hindered by high rendering and training latency. 3D
Gaussian Splatting (3D-GS) [4] has emerged as a high-
speed alternative, achieving real-time rendering by replacing
the implicit NeRF representation with an explicit point-based
one. Our approach adapts the efficiency of 3D-GS from a



reconstruction tool to a rapid, text-conditioned synthesis
engine for AR.

B. Context-Aware AR and Vision-Language Models

Traditional context-aware AR relies on predefined triggers
(markers, object IDs) to load static content. The integration
of Vision-Language Models (VLMs) allows for nuanced,
semantic understanding of the user’s environment. Recent
work has used VLMs to generate text descriptions from scenes.
We extend this by using the VLM output not as a description,
but as the core conditioning input for a downstream 3D gen-
erative model, creating a true perception-to-generation loop.

III. SYSTEM ARCHITECTURE AND METHODOLOGY

The design of a real-time generative AR system re-
quires addressing two conflicting demands: the computa-
tional intensity of generative models and the low-power
constraints of AR smart glasses. Our solution is a novel
Split-Compute Context-Aware Generative Architecture
that strategically distributes tasks between the on-device NPU
and an edge/cloud server.

A. Split-Compute Context-Aware Generative Architecture

The system is partitioned into three logical units, con-
nected by high-throughput, low-latency communication chan-
nels (e.g., 60 GHz WiGig or 5G):

1) AR Smart Glasses (Client): Handles real-time sensing,
pose estimation, and final 3D-GS rendering.

2) Edge/Cloud Server (Generator): Executes the
resource-intensive VLM/LLM reasoning and the 3D-GS
synthesis and refinement.

3) Museum Knowledge Base (KB): Provides structured
metadata and ground-truth knowledge required for con-
text reasoning.

1) Perception and Localization (On-Device): The AR de-
vice continuously captures the environment via its RGB-D
cameras. The on-device processing stack performs:

• Visual-Inertial SLAM: Provides the 6-DOF camera pose
Puser(t) in the world frame with low drift.

• Artifact Candidate Detection: A highly optimized ob-
ject detection model (e.g., MobileNetV3) rapidly identi-
fies regions of interest (ROI) corresponding to museum
artifacts. The ROI image patch IROI and the correspond-
ing pose PROI are streamed to the server.

The on-device component is optimized for minimal latency,
ensuring Puser(t) is always current for accurate spatial regis-
tration.

B. Context Reasoning and Prompt Formulation

Upon receiving IROI and PROI , the server’s reasoning
module executes a two-stage process: semantic analysis and
query generation.

1) Semantic Analysis via VLM: A fine-tuned Vision-
Language Model (V), pre-trained on a corpus of historical
images and damage classifications, analyzes IROI .

(IDartifact,Condition) = V(IROI ,LKB)

where LKB represents museum-specific labels used for
recognition. IDartifact is the precise catalog number, and
Condition is a descriptive vector (e.g., ‘cracked‘, ‘missing-
limb‘, ‘weathered-patina‘). The system also determines the
user’s Target Generation Goal (Goalgen), which is typically
inferred from the context (e.g., if Condition is ‘damaged‘,
Goalgen defaults to ‘restoration‘).

2) Knowledge-Augmented Prompt Formulation via LLM:
The identified context is fed to a Knowledge-Augmented
Large Language Model (L), which uses the museum’s
structured Knowledge Base (K) to generate a rich, determin-
istic prompt Pgen. The LLM is constrained by a generation
template to ensure the output is directly parsable by the 3D
generation engine.

Pgen = Template(L(IDartifact,Condition,Goalgen|K))

This mechanism ensures the output is not merely a generic
description but a generation-optimized query (e.g., specify-
ing material, texture, historical era) that guarantees content
accuracy and visual fidelity.

C. Real-Time Hybrid 3D-GS Generation Engine

The primary innovation lies in accelerating the 3D synthe-
sis process to meet the sub-second latency requirement. We
propose a Hybrid Initialized 3D-GS Refinement technique.

1) Latent Space Retrieval and Initialization: The prompt
Pgen is encoded into a text embedding Et. This embedding is
used to search a database of pre-computed latent 3D feature
representations, specifically focusing on the initial Gaussian
parameters (Ginit) of similar object categories:

Ginit = k-NN(Et,Dlatent)

where Dlatent is a dataset of latent 3D-GS parameters for
common object types. This retrieval step provides a high-
quality initial configuration for the Gaussian centers, colors,
and covariance matrices, dramatically reducing the optimiza-
tion time.

2) Conditioned 3D-GS Refinement: The retrieved initial
state Ginit is then refined using a lightweight, prompt-
conditioned optimization loop. The generative loss function
Lgen is minimized over the parameters Θ of the Gaussian
Splat set G:

Lgen(G) = λ1LSDS(G,Et) + λ2Ldepth(G) + λ3Lreg(G)

• LSDS : The Score Distillation Sampling loss, guiding the
generated splat set towards the visual quality specified by
Et.

• Ldepth: A depth regularization term ensuring splats ad-
here to the artifact’s bounding box.

• Lreg: A regularization term minimizing the number of
unnecessary splats for fast rendering.



Fig. 2: The Split-Compute Context-Aware Generative Architecture.

The entire refinement process is optimized to run for a
maximum of Nmax ≪ 100 gradient descent steps, ensuring
Tgen ≤ 250 ms.

D. Temporal Consistency for Animated Narratives

When Goalgen requires an animated narrative, the system
generates a temporally consistent sequence of 3D-GS states
{Gt}Tt=1.

1) Temporal Latent Diffusion: The T states are generated
iteratively, where the initialization for Gt is conditioned on
the previous state Gt−1:

Gt = Refine(Gt−1,Et)

This sequential initialization ensures the 3D structure and
colors exhibit smooth temporal flow.

2) Motion Consistency Constraint: To prevent flickering
and structural drift, a motion consistency loss is introduced:

Lmotion =
1

T − 1

T−1∑
t=1

||C(Gt)−C(Gt−1)||22

where C(G) is the vector of Gaussian centers. This term min-
imizes the displacement of the splat centers across consecutive
time steps, guaranteeing a structurally stable animation.

E. Spatial Registration and 360-Degree Consistency

The final optimized set of 3D-GS parameters G is com-
pressed and streamed to the AR device.

1) Spatial Registration: The generated asset G is placed
in the world frame W using the pre-computed transformation
Tartifact→W . The real-time rendering is governed by the
continuous user pose Puser(t):

IAR = R(G,Puser(t))⊕ Ireal

where R is the fast 3D-GS rendering function, Ireal is the real-
world captured image, and ⊕ denotes the depth-tested overlay
operation.

2) View-Consistency Guarantee: The use of an explicit
volumetric representation (3D-GS) inherently supports 360◦

view-consistency, as the underlying 3D structure is fixed.
Consistency is maintained by ensuring the on-device renderer
is optimized for minimal latency, rapidly recalculating the splat
projection as the user moves.

IV. MUSEUM APPLICATION AND IMPLEMENTATION

A. Case Study Environment and Artifacts

Our testbed was the simulated ”Archaeological Restoration
Exhibit,” featuring five distinct artifacts: two damaged Roman
pottery vessels, a fragmented bronze statue, a chipped marble
bust, and an incomplete medieval sword. The generation goals
included restoration, internal cross-section, and historical use
animation.

B. Implementation Details and Hardware Stack

• Client Hardware: Microsoft HoloLens 2. Utilizes its
onboard HPU (Holographic Processing Unit) for SLAM
and 3D-GS rendering.

• Server Hardware: Single NVIDIA A100 GPU (80GB)
hosted on a cloud instance.

• Software Frameworks: Unity and MRTK for AR client
development. PyTorch for the VLM/LLM and 3D-GS
generation. Communication used gRPC for low-latency
transfer of serialized 3D-GS parameters (G).

• Dataset: We curated a dataset of 500 artifact images
paired with ground-truth 3D meshes (for evaluation) and
rich textual metadata for LLM pre-training.

C. Generation Time Optimization

To achieve the target latency, we implemented two key
optimizations: (1) Parameter Quantization: The generated
3D-GS parameters were quantized from 32-bit floating point
to 16-bit for faster transfer and rendering. (2) Adaptive Splat
Culling: On the client, splats whose centers are outside the
user’s field of view or behind the real-world artifact’s depth
map were aggressively culled before rendering.



V. EXPERIMENTAL RESULTS AND EVALUATION

A. Evaluation Metrics

1) Geometric and Perceptual Fidelity: Fidelity is measured
against the ground-truth restored 3D models.

Fidelity =
1

|V |
∑
v∈V

(α1PSNRv + α2SSIMv + α3LPIPSv)

where V is a set of 100 randomly sampled novel views. We
prioritize LPIPS (α3) as the most relevant metric for visual
realism.

2) Real-Time Performance and Consistency:
• End-to-End Latency (TE2E): The total time from user

gaze fixation to the stable rendering of the generated
asset.

• View-Consistency Error (VCE): Quantifies the spatial
stability of the generated content as the user moves. It
is defined as the mean L1 pixel difference between the
rendered image at the current pose Pt and the rendered
image warped from the previous pose Pt−1 over 50
contiguous frames during head movement:

VCE =
1

50

50∑
t=1

||Irender(Pt)−W(Irender(Pt−1),Tt−1→t)||1

where W is the warpping function based on the known
change in camera pose T.

B. Comparative Analysis of Generative Pipelines

The performance of the proposed Hybrid 3D-GS was bench-
marked against two alternatives: a standard NeRF synthesis
pipeline and a fast single-image-to-mesh pipeline (Table I).

TABLE I: Performance Comparison of Generative Methods
(50 Artifact Average)

Method Latency (TE2E ) LPIPS ↓ VCE ↓
NeRF-based Synthesis 4.5 s 0.15 0.08
Single-Image-to-Mesh 0.8 s 0.35 0.25
Our Hybrid 3D-GS 0.41 s 0.20 0.11

The results confirm that the Hybrid 3D-GS achieves a
significant reduction in TE2E , lowering it from 4.5 s (NeRF)
to 0.41 s. This is a critical factor for achieving a practical AR
experience. While the NeRF baseline offered slightly better
perceptual quality (lower LPIPS), the Hybrid 3D-GS offers a
viable trade-off, meeting the real-time constraint.

C. Latency Breakdown

The average End-to-End Latency of 410 ms was broken
down as follows:

• Tperception (On-device recognition/data transfer): 50 ms
• Treasoning (VLM/LLM Prompting): 80 ms
• Tgen (3D-GS Synthesis): 250 ms
• Ttransfer (Data download/initial render): 30 ms

This detailed breakdown, also illustrated in a figure, highlights
Tgen as the primary optimization target.

Fig. 3: Breakdown of the End-to-End Latency (TE2E) for the
Hybrid 3D-GS Pipeline. Tgen (3D-GS Synthesis) represents
the dominant computational bottleneck.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

We have successfully developed and validated a novel
framework for context-aware, real-time 3D object generation
tailored for AR smart glasses. By integrating a sophisticated
VLM/LLM reasoning module with an accelerated Hybrid 3D-
GS synthesis pipeline, we achieved sub-half-second latency
(410 ms) and high geometric consistency for dynamic content
synthesis. Our museum application case study demonstrates
the system’s potential to revolutionize cultural heritage expe-
riences, transitioning AR content from static assets to infinitely
variable, context-driven generated realities. This approach pro-
vides a crucial blueprint for scaling AR content generation
across diverse applications.

B. Future Work

• Full On-Device Generation: The long-term goal is to
port the entire 3D-GS generation and refinement pipeline
onto the AR device’s dedicated NPU, eliminating network
latency and achieving true edge-based autonomy.

• Personalized Generation: Incorporate deeper user con-
text (e.g., user’s known language, age, prior knowledge)
into the LLM query to personalize the generated narra-
tive, visual style, and model complexity.

• Generative Interaction: Extend the framework to allow
the user’s gesture or voice command to dynamically re-
prompt and modify the generated 3D content in real-time
(e.g., ”Change the color of the helmet,” or ”Show the
animation in slow motion”).
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