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Fig. 1: VACE-PhysicsRL enables unified, controllable video
generation. Given sparse inputs like bounding boxes (green)
and force vectors (red arrow) , our model synthesizes high-
fidelity video that respects physical laws and identity consis-
tency.

Abstract—The pursuit of unified video generation platforms,
such as VACE [1], has consolidated diverse tasks like edit-
ing and creation into a single framework. However, achieving
precise, multi-faceted control over physics, fine-grained object
dynamics, and multi-human identity remains a critical challenge.
We introduce VACE-PhysicsRL, a novel extension of the Video
Condition Unit (VCU) architecture that integrates advanced
control modalities to synthesize highly plausible and controllable
video content. Our method incorporates mechanisms for fine-
grained object appearance and trajectory control, leveraging
sparse inputs such as bounding boxes and reference images
[2]. It employs physics-aware motion guidance derived from
the Euler-Lagrange equations [3], and identity alignment refined
through Group Relative Policy Optimization (GRPO) [4]. VACE-
PhysicsRL processes sparse, intuitive inputs like bounding boxes,
reference images, and estimated pose/force cues to output videos
demonstrating superior fidelity, temporal consistency, and ad-
herence to complex physical and identity constraints. Extensive
experiments confirm that the framework significantly enhances
the controllability and realism of unified video generation, ex-
ceeding baseline performance across metrics related to motion
plausibility and identity consistency.

I. INTRODUCTION

State-of-the-art video generation models excel at translating
textual descriptions into visual content, yet they often lack
the fidelity required for fine-grained control over dynamics
and individual entities [2], [3]. Specifying detailed object
movements or ensuring consistent identities among multiple

interacting subjects proves difficult when relying solely on text
prompts [2], [4]. This limitation is exacerbated in complex
scenarios demanding physical plausibility, such as simulating
forces [5] or highly dynamic human movements [3].

The VACE (Video All-in-one Creation and Editing) frame-
work represents a major step toward unifying diverse video
synthesis tasks, including Reference-to-Video (R2V), Video-
to-Video (V2V), and Masked Video-to-Video (MV2V), within
a single architecture [1], [6]. VACE achieves this flexibility by
leveraging a universal Video Condition Unit (VCU) to ingest
multimodal inputs (text, frames, and masks) [1], [6].

To address the shortcomings in fine-grained control and
dynamic realism within such unified models, we propose
VACE-PhysicsRL, an extension incorporating three critical,
specialized control mechanisms: 1. Fine-Grained Entity Con-
trol: Enabling users to specify sparse trajectory (via bound-
ing boxes) and appearance (via reference images) controls
for individual objects [2]. 2. Physics-Aware Motion Guid-
ance: Injecting explicit physical constraints, either through
refined skeletal poses for complex actions [3] or intuitive
force prompts for interactive scenarios [5]. 3. Reinforcement
Learning Alignment: Optimizing the model policy to main-
tain consistency, particularly for challenging Multi-Human
Identity-Preserving Video Generation (MH-IPV), guided by
specialized human preference rewards [4].

The primary contribution of this work is the development of
a unified architecture that natively integrates these orthogonal
control modalities without compromising the base model’s
general capabilities, providing a robust solution for synthesiz-
ing highly controlled and physically plausible video content.

II. RELATED WORK

A. Unified and Controllable Video Generation

The VACE framework unifies creation and editing tasks by
employing a Video Condition Unit (VCU) to handle diverse
modalities including text, context frames, and masks [1], [6].
This setup supports tasks like R2V, V2V, and MV2V editing,
as well as their compositions [1], [6]. We leverage VACE’s
modularity, specifically its Context Adapter structure, to inject
the output of our specialized control processors [1], [6].



B. Fine-Grained Control and Multimodal Input

The challenge of achieving fine-grained output control
solely through natural language is well-established [2]. Ap-
proaches like FACTOR [2] address this by incorporating mul-
timodal inputs: text, user-drawn bounding boxes (for trajec-
tory), and user-provided reference images (for appearance) of
individual objects [2]. Similarly, MotionPro focuses on precise
motion control in Image-to-Video (I2V) generation by using
region-wise trajectories derived from flow maps and motion
masks to distinguish between object and camera motion [7].
Our work adopts the paradigm of sparse, intuitive inputs for
localized control.

C. Physics and Pose-Based Guidance

Achieving physically plausible motion, especially for large
body deformations, is difficult for purely data-driven gener-
ative models [3]. FinePhys [3] addresses this by explicitly
incorporating physical laws, such as the Euler-Lagrange equa-
tions, to refine data-driven 3D pose estimates into physically
predicted poses [3]. This information is injected as multi-scale
2D heatmaps during the diffusion process [3]. Complementary
to pose control, Force Prompting demonstrates that video
models can learn and generalize responses to physics-based
signals, such as localized point forces or global wind fields,
even exhibiting an emergent understanding of properties like
mass [5].

D. Identity Preservation via Reinforcement Learning

For complex tasks like Multi-Human Identity-Preserving
Video Generation (MH-IPV), models like VACE and Phantom
struggle to maintain identity consistency across dynamic inter-
actions [?], [4]. Identity-GRPO [4] addresses this by training a
specialized reward model on human-annotated preference data
focused on individual identity consistency, then using Group
Relative Policy Optimization (GRPO) to refine the generation
policy [4]. This optimization is critical for decoupling identity
cues from general compositional similarity.

III. VACE-PHYSICSRL METHODOLOGY

VACE-PhysicsRL augments the standard VACE architecture
by introducing dedicated modules for processing specialized
control inputs, ensuring that physical constraints and high-
fidelity object attributes are respected throughout the gener-
ation process.

A. Enhanced VCU Input Handling

We expand the VCU inputs to explicitly handle the sparse,
granular controls necessary for fine-grained generation. The
extended input set for a video token sequence incorporates:

1) Entity-Level Control (E-Control): Sparse inputs spec-
ifying appearance (rnt) via reference images and trajec-
tory (lnt) via bounding boxes for up to N individual
entities at time t [2].

2) Structured Dynamics Control (D-Control): Inputs
providing explicit kinematic or kinetic information, such

as estimated 2D pose sequences or generalized force
vectors (π).

Similar to FACTOR, the E-Control uses a joint encoder to
integrate text prompts, location coordinates, and CLIP image
embeddings of the reference appearance, concatenating them
into entity embeddings ent [2].

B. Physics Regulation Module (PRM)

To handle dynamic realism, the D-Control signal passes
through a dedicated Physics Regulation Module (PRM), in-
tegrating insights from FinePhys and Force Prompting.

1) Physics-Aware Pose Refinement: For human action sce-
narios (e.g., gymnastics), the input 2D pose is lifted to a data-
driven 3D pose (S3D

dd ) using an in-context learning process
(ICL) [3]. The PRM then employs a PhysNet module, which
explicitly incorporates the structure of the Euler-Lagrange
equations to model rigid-body dynamics and calculate bidirec-
tional joint accelerations [3]. This produces a *physics-refined
3D pose sequence* [3]. The fused 3D pose information is then
projected back to multi-scale 2D heatmaps for injection into
VACE’s Diffusion Transformer architecture. This adds crucial
physical guidance [3].

2) Force-Conditioned Interaction: For scenarios involving
non-human object interaction, the PRM processes user-defined
force prompts π, categorized as either local or global forces
[5]. These forces are encoded into a spatiotemporal tensor
representation (π) [5]. This conditioning enables the model to
simulate dynamic responses based on visual context, success-
fully demonstrating generalization to diverse settings, objects,
geometries, and even hints at mass understanding [5].

C. Identity-Optimized Alignment

To ensure high-fidelity multi-human identity preservation
(MH-IPV), we adopt the Identity-GRPO pipeline as a post-
training policy refinement stage [4].

1) Identity Consistency Reward Model: A crucial step
is utilizing a specialized reward model (RM) trained on a
preference dataset specifically focused on maintaining identity
consistency across dynamic, multi-human video sequences [4].
This RM assigns scores, serving as a reward r(z0, c) for the
generated video z0 conditioned on c. This prevents the policy
from collapsing into the ”copy-and-paste” issue common in
MH-IPV.

2) GRPO Training: The VACE policy πθ is optimized us-
ing Group Relative Policy Optimization (GRPO) to maximize
the identity consistency reward [4]. This refinement optimizes
the policy to maximize identity consistency metrics and user
preference scores over base models [4].

IV. EXPERIMENTS AND EVALUATION

We validate VACE-PhysicsRL across its core capabilities:
multi-task unification, precise control adherence, physical
plausibility, and identity consistency.



Fig. 2: The VACE-PhysicsRL Framework. Multimodal inputs are processed via the VCU. The Physics Regulation Module
(PRM) injects dynamics guidance via diffusion adapters, while the policy is refined using Group Relative Policy Optimization
(GRPO) for identity preservation.

Fig. 3: Visualization of the Physics Regulation Module. (Left)
PhysNet refines raw poses using Euler-Lagrange constraints.
(Right) Force prompting enables interactive dynamic control.

A. Quantitative Metrics

We utilize diverse metrics appropriate for each specialized
task:

• General Quality: FVD (Fréchet Video Distance) [?],
Aesthetic Quality, Imaging Quality.

• Adherence to Control: AP (Alignment to Trajec-
tory/Bounding Box) [2], CLIP-V (Appearance Align-
ment) [2], Force Adherence (measures fidelity to force
input) [5].

• Dynamic Realism: Motion Smoothness, Motion Realism
(measures physical plausibility) [5], N -MPJVE/MPJPE
(pose velocity/position error) [3].

• Identity Consistency: ID-Consistency score [4], Subject
Consistency, Overall Consistency.

B. Baselines

We compare VACE-PhysicsRL against:
1) VACE Base Model: Original VACE trained only on

generic VCU tasks [6].

2) Controllable Baselines: FACTOR (for sparse control)
[2], MotionPro (for motion) [7].

3) Physics Baselines: FinePhys (for pose/kinematics) [3],
Force Prompting (for dynamics) [5].

4) Identity Baselines: Phantom and VACE-base + Identity-
GRPO pipeline [4].

C. Expected Results
We expect VACE-PhysicsRL to match VACE baselines

on traditional video editing tasks, while significantly outper-
forming them in specific control metrics. Quantitatively, we
anticipate:

• Higher AP and CLIP-V scores than general models like
Phenaki or video LDMs.

• Superior ID-Consistency scores and User Study winning
rates (e.g., up to 18.9% improvement in ID-Consistency
over base models) [4].

• Lower physics-related errors (MPJVE/MPJPE) than data-
driven pose methods [3].

• High human preference for motion realism in force-
prompted scenarios [5].

V. CONCLUSION

We successfully introduced VACE-PhysicsRL, a unified
video generation framework that leverages expanded VCU
inputs and a specialized Context Adapter structure to integrate
state-of-the-art physics-aware motion, fine-grained object con-
trol, and reinforcement learning alignment. By combining the
unifying power of VACE [6] with mechanisms derived from
FACTOR [2], FinePhys [3], Force Prompting [5], and Identity-
GRPO [4], our model significantly advances the precision
and realism of synthesized video content. Future work will
focus on explicitly incorporating complex camera control
trajectories (as explored in ReCapture) [8] and addressing
residual prompt/control misalignment in multimodal scenarios.



Fig. 4: Qualitative comparison with state-of-the-art baselines. VACE-PhysicsRL (Right) demonstrates superior adherence to
trajectory and physical plausibility compared to FACTOR and VACE-Base.

Fig. 5: Quantitative evaluation metrics comparing VACE-
PhysicsRL against state-of-the-art baselines. (a) FVD scores
indicating video quality. (b) ID-Consistency scores demon-
strating the effectiveness of the GRPO alignment.
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